

Dead Loads

As per AASHTO LRFD Design Specification, the dead load on the girder is composed of

1. Self-Weight of the girder
2. Weight of Deck
3. Superimposed Dead Loads

Superimposed dead loads represent non-structural dead loads that remain permanently on the structure such as wearing surface, sidewalk, barriers and fences. *Figure 1* below shows the aforementioned dead load components for a typical highway bridge.

Figure 1: Dead load components for a typical highway bridge

The calculator outputs uniform load and the corresponding maximum moment for each component of the dead load. The bridge being considered in the calculator is a simply supported single span bridge. Therefore, the maximum moment due to dead loads occurs at the mid span.

1. Self-Weight of Girder

The inputs to the calculator are:

1. Area of Girder (A)
2. Unit Weight of Reinforced Concrete (γ)
3. Span Length (L)

Using the above mentioned inputs, the calculator outputs:

1. Uniform Girder Dead Load (W_{gDL})
2. Max. Moment of Girder Dead Load (M_{gDL})

Example (Using Test Data)

Given:

$$A = 550000 \text{ mm}^2, \gamma = 25 \text{ kN/m}^3, L = 30 \text{ m}$$

The uniform load due to self-weight of the girder (W_{gDL}) can be calculated as follows:

$$W_{gDL} = A * \gamma = (550000 \times 10^{-6})(25)$$

$$W_{gDL} = 13.75 \text{ kN/m}$$

As mentioned previously, for simply supported girders the maximum moment occurs at mid-span. It can be calculated as follows

$$M_{gDL} = \frac{W_{gDL} * L^2}{8} = \frac{13.75 \times 30^2}{8}$$

$$M_{gDL} = 1546.88 \text{ kN m}$$

2. Wet Weight of Slab

The inputs to the calculator are:

1. Unit Weight of Reinforced Concrete (γ)
2. Span Length (L)
3. Slab Thickness (t_s)
4. Girder Spacing (s)

Using the above mentioned inputs, the calculator outputs:

1. Uniform Wet Slab Dead Load (W_{slabw})
2. Max. Moment of Wet Slab (M_{slabw})

Example (Using Test Data)

Given:

$$\gamma = 25 \text{ kN/m}^3, L = 30 \text{ m}, t_s = 0.25 \text{ m}, s = 1.35 \text{ m}$$

$$W_{slabw} = t_s * s * \gamma = (0.25)(1.35)(25)$$

$$W_{slabw} = 8.44 \text{ kN/m}$$

$$M_{slabw} = \frac{W_{slabw} * L^2}{8} = \frac{8.44 \times 30^2}{8}$$

$$M_{gDL} = 949.5 \text{ kN m}$$

3. Superimposed Dead Loads

Superimposed dead loads include:

1. Weight of Wearing Surface (w_{wear})
2. Weight of Barrier ($w_{barrier}$)
3. Weight of Sidewalk ($w_{sidewalk}$)
4. Weight of Facade (w_{facade})

Therefore, total superimposed dead load (W_{sdl}) can be expressed as:

$$W_{sdl} = w_{wear} + w_{barrier} + w_{sidewalk} + w_{facade}$$

The inputs to the calculator are:

1. Span Length (L)
2. Number of Girders (N_g)
3. Span Width (W)
4. Wearing Layer Thickness (t_w)
5. Avg. Side Walk Thickness (S_t)
6. Side Walk Width (S_w)
7. Unit Weight of Reinforced Concrete (γ)
8. Unit Weight of Wearing Layer Concrete (γ_w)

Using the above mentioned inputs, the calculator outputs:

1. Uniform Superimposed Dead Load (W_{sdl})
2. Max. Moment of Superimposed Dead Load (M_{sdl})

Example (Using Test Data)

Given:

$$L = 30\text{m}, N_g = 9, W = 12\text{m}, t_w = 0.05\text{m}, S_t = 0.25, S_w = 3\text{m}, \gamma = 25 \text{ kN/m}^3, \gamma_w = 22 \text{ kN/m}^3$$

Weight of Wearing Surface:

$$\text{Wearing Surface Width} = \text{Span Width} - 2 \times \text{Sidewalk Width}$$

$$\text{Wearing Surface Width} = W - (2 \times S_w) = 12 - (2 \times 3) = 6 \text{ m}$$

$$w_{wear} = \frac{\text{Wearing Surface Width} * t_w * \gamma_w}{N_g} = \frac{6 * 0.05 * 22}{9}$$

$$w_{wear} = 0.73 \text{ kN/m}$$

Weight of Barrier:

The uniform weight of each barrier is assumed to be 1 kN/m .

As shown in *Figure 1* there are a total of 2 pedestrian barriers and 2 road barriers. Therefore, the total barrier weight is 4 kN/m . Then,

$$w_{barrier} = \frac{\text{Total Barrier Weight}}{N_g} = \frac{4}{9} = 0.44 \text{ kN/m}$$

Weight of Sidewalk:

$$w_{sidewalk} = \frac{(2 * S_w) * S_t * \gamma}{N_g}$$

$$w_{sidewalk} = \frac{(2 * 3) * 0.25 * 25}{9} = 4.17 \text{ kN/m}$$

Weight of Façade:

The total weight of façade is assumed to be 120 kN.

$$w_{facade} = \frac{120}{N_g * L} = \frac{120}{9 * 30}$$

$$w_{facade} = 0.44 \text{ kN/m}$$

$$W_{sdl} = w_{wear} + w_{barrier} + w_{sidewalk} + w_{facade}$$

$$W_{sdl} = 0.73 + 0.44 + 4.17 + 0.44$$

$$W_{sdl} = \mathbf{5.78 \text{ kN/m}}$$

$$M_{sdl} = \frac{W_{sdl} * L^2}{8} = \frac{5.78 \times 30^2}{8}$$

$$M_{sdl} = \mathbf{650.25 \text{ kN m}}$$

Summary of Results

Figure 2 below shows the inputs (test data) and the corresponding output from the calculator for each component of dead load.

1. Self Weight of Girder	2. Wet Weight of Slab	3. Superimposed Dead Loads
Area of Girder 550000 mm ²	Unit Weight of Reinforced Concrete 25 kN/m ³	Span Length 30 m
Unit Weight of Reinforced Concrete 25 kN/m ³	Span Length 30 m	Number of Girder 9
Span Length 30 m	Slab Thickness , ts 0.25 m	Span Width 12 m
	Girder Spacing , s 1.35 m	Wearing Layer Thickness 0.05 m
		Sidewalk Thickness Avg. 0.25 m
		Sidewalk Width 3 m
		Unit Weight of Reinforced Concrete 25 kN/m ³
		Unit Weight of Wearing Layer Concrete 22 kN/m ³
Uniform Girder Dead Load (wgDL) 13.75 kN/m	Uniform Wet Slab Dead Load (wslabw) 8.44 kN/m	Uniform Superimposed Dead Load (wsdl) 5.79 kN/m
Max. Moment of Girder Dead Load (MgDL) 1546.88 kN.m	Max. Moment of Wet Slab (Mslabw) 949.22 kN.m	Max. Moment of Superimposed Load (Msdl) 651.35 kN.m

Figure 2: Calculator output for each component of dead load using test data

Results are summarized and errors are calculated in Table 1 and Table 2 below.

Table 1: Percentage error between hand calculations and calculator output for uniform load

Load Type	Uniform Dead Load (kN/m)		Error (%)
	Hand Calculations	Calculator	
Self-Weight of Girder	13.75	13.75	0.0
Wet Weight of Slab	8.44	8.44	0.0
Superimposed Dead Load	5.78	5.79	0.17

Table 2: Percentage error between hand calculations and calculator output for maximum moments

Load Type	Max. Moment (kN m)		Error (%)
	Hand Calculations	Calculator	
Self-Weight of Girder	1546.88	1546.88	0.0
Wet Weight of Slab	949.50	949.22	0.03
Superimposed Dead Load	650.25	651.35	0.17